Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Pharmacol Drug Dev ; 9(6): 728-741, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31876104

RESUMO

The mass balance, pharmacokinetics, and biotransformation of JTZ-951 (enarodustat), a novel hypoxia-inducible factor prolyl hydroxylase inhibitor, were characterized in patients (N = 6) with end-stage renal disease on hemodialysis. Following a 10-mg (100 µCi) oral dose of 14 C-JTZ-951, whole blood, feces, dialysate, and, if feasible, urine were obtained for pharmacokinetic assessments and for metabolite profiling and identification in appropriate matrices. Fecal excretion was the major route of elimination of radioactivity, and urinary excretion a minor route, with mean (coefficient of variation [%CV]) recovery of 77.1 (16.2)% and 10.9 (92.0)% of the dose, respectively. Radioactivity was not detected in the dialysate, and mean (%CV) total recovery in excreta was 88.0 (14.9)%. For parent JTZ-951 in plasma, the mean (%CV) effective half-life was 8.96 (7.7)% hours, and area under the curve over 24 hours comprised the majority (>80%) of total exposure, with relatively low variability in these pharmacokinetic variables. Based on profiling of plasma radioactivity, parent JTZ-951 was the predominant circulating component, accounting for 93.7% or more of radioactivity, and metabolite M2 (hydroxylated product) was the only detectable metabolite, but its exposure was minor (<5%) versus unchanged JTZ-951. In urine and feces, the predominant analyte was JTZ-951, and metabolite M2 was the predominant albeit minor metabolite, with small amounts of other metabolites. Thus, plasma exposure to drug-derived radioactivity was primarily due to parent JTZ-951, and the drug was cleared mainly by excretion of unchanged JTZ-951. The study appropriately characterized the disposition of JTZ-951 in patients with end-stage renal disease.


Assuntos
Falência Renal Crônica/terapia , Glicinas N-Substituídas/administração & dosagem , Inibidores de Prolil-Hidrolase/administração & dosagem , Piridinas/administração & dosagem , Diálise Renal , Triazóis/administração & dosagem , Administração Oral , Área Sob a Curva , Meia-Vida , Humanos , Masculino , Pessoa de Meia-Idade , Glicinas N-Substituídas/farmacocinética , Inibidores de Prolil-Hidrolase/farmacocinética , Piridinas/farmacocinética , Triazóis/farmacocinética
2.
Clin Pharmacol Drug Dev ; 8(3): 371-384, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30779479

RESUMO

Pharmacokinetics, safety, and tolerability of JTK-853, a novel HCV polymerase inhibitor, were evaluated in single and multiple ascending dose (SAD, MAD) studies, with food- and ketoconazole-related effects on exposure to JTK-853 and its active (CYP3A4 mediated) metabolite M2. JTK-853 was safe and well tolerated in both studies. In the SAD study, at doses >1600 mg (with standard breakfast [SBF]), JTK-853 exposure did not increase further, was substantially higher (AUCinf increase: 3- to 8-fold) with SBF (vs fasted), with a moderate increase in AUCinf (approximately 1.5-fold [1600 mg]) with a high-fat breakfast (vs SBF). In the SAD study (400-1600 mg, SBF), mean effective half-life (t1/2(eff) ) of JTK-853 was 8.3 to 10.9 hours, and 20.3 to 27.3 hours in the MAD study (twice daily dosing, fed condition), with 2- to 3-fold accumulation in exposure (AUCtau ). At steady-state, AUCtau increased dose proportionally, and was approximately 2-fold higher with ketoconazole coadministration. Metabolite M2 (equipotent to JTK-853 in vitro) did not contribute significantly to parent drug exposure and decreased with increase in dose, repeated dosing, and ketoconazole coadministration. Trial simulation-based ratios (n = 1000/dose level) of trough JTK-853 plasma concentrations to the in vitro EC90 for HCV genotype 1b were assessed for dose selection in a separate proof-of-concept study in patients. The studies enabled delineation of key drug attributes for further assessments in the target population.


Assuntos
Antivirais/farmacocinética , Interações Alimento-Droga , Cetoconazol/farmacologia , Piperazinas/farmacocinética , RNA Polimerase Dependente de RNA/antagonistas & inibidores , Adolescente , Adulto , Antivirais/administração & dosagem , Antivirais/efeitos adversos , Antivirais/farmacologia , Área Sob a Curva , Relação Dose-Resposta a Droga , Esquema de Medicação , Interações Medicamentosas , Feminino , Meia-Vida , Voluntários Saudáveis , Hepacivirus/efeitos dos fármacos , Hepacivirus/enzimologia , Hepacivirus/genética , Humanos , Masculino , Pessoa de Meia-Idade , Piperazinas/administração & dosagem , Piperazinas/efeitos adversos , Piperazinas/farmacologia , Adulto Jovem
3.
Antimicrob Agents Chemother ; 57(1): 436-44, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23129048

RESUMO

JTK-853, a palm site-binding NS5B nonnucleoside polymerase inhibitor, shows antiviral activity in vitro and in hepatitis C virus (HCV)-infected patients. Here, we report the results of genotypic and phenotypic analyses of resistant variants in 24 HCV genotype 1-infected patients who received JTK-853 (800, 1,200, or 1,600 mg twice daily or 1,200 mg three times daily) in a 3-day monotherapy. Viral resistance in NS5B was investigated using HCV RNA isolated from serum specimens from the patients. At the end of treatment (EOT) with JTK-853, the amino acid substitutions M414T (methionine [M] in position 414 at baseline was replaced with threonine [T] at EOT), C445R (cysteine [C] in position 445 at baseline was replaced with arginine [R] at EOT), Y448C/H (tyrosine [Y] in position 448 at baseline was replaced with cysteine [C] or histidine [H] at EOT), and L466F (leucine [L] in position 466 at baseline was replaced with phenylalanine [F] at EOT), which are known to be typical resistant variants of nonnucleoside polymerase inhibitors, were observed in a clonal sequencing analysis. These substitutions were also selected by a treatment with JTK-853 in vitro, and the 50% effective concentration of JTK-853 in the M414T-, C445F-, Y448H-, and L466V-harboring replicons attenuated the susceptibility by 44-, 5-, 6-, and 21-fold, respectively, compared with that in the wild-type replicon (Con1). These findings suggest that amino acid substitutions of M414T, C445R, Y448C/H, and L466F are thought to be viral resistance mutations in HCV-infected patients receiving JTK-853 in a 3-day monotherapy.


Assuntos
Antivirais/farmacologia , Farmacorresistência Viral/genética , Genótipo , Hepacivirus/efeitos dos fármacos , Hepatite C/tratamento farmacológico , Fenótipo , Piperazinas/farmacologia , Substituição de Aminoácidos , Aminoácidos/genética , Método Duplo-Cego , Esquema de Medicação , Farmacorresistência Viral/efeitos dos fármacos , Hepacivirus/genética , Hepatite C/virologia , Humanos , Mutação , Placebos , Replicon/efeitos dos fármacos , Análise de Sequência de DNA , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...